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In this paper three models of parallel speedup are studied. They
are fixed-size speedup, fixed-time speedup, and memory-bounded
speedup. The latter two consider the relationship between speedup
and problem scalability. Two sets of speedup formulations are
derived for these three models. One set considers uneven workload
allocation and communication overhead and gives more accurate
estimation. Another set considers a simplified case and provides a
clear picture on the impact of the sequential portion of an applica-
tion on the possible performance gain from parallel processing.
The simplified fixed-size speedup is Amdahl’s law. The simplified
fixed-time speedup is Gustafson’s scaled speedup. The simplified
memory-bounded speedup contains both Amdahl’s law and Gus-
tafson’s scaled speedup as special cases. This study leads to a
better understanding of parallel processing. © 1993 Academic Press, Inc.

1. INTRODUCTION

Although parallel processing has become a common
approach for achieving high performance, there is no
well-established metric to measure the performance gain
of parallel processing. The most commonly used perfor-
mance metric for parallel processing is speedup, which
gives the performance gain of parallel processing versus
sequential processing. Traditionally, speedup is defined
as the ratio of uniprocessor execution time to execution
time on a parallel processor. There are different ways to
define the metric ‘‘execution time.” In fixed-size
speedup, the amount of work to be executed is indepen-
dent of the number of processors. Based on this model,
Ware [17] summarized Amdahl’s [1] arguments to define
a speedup formula which is known as Amdahl’s law.
However, in many applications, the amount of work to
be performed increases (as the number of processors in-
creases) in order to obtain a more accurate or better
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result. The concept of scaled speedup was proposed by
Gustafson er al. at Sandia National Laboratory [6].
Based on this concept, Gustafson suggested a fixed-time
speedup [5], which fixes the execution time and is inter-
ested in how the problem size can be scaled up. In scaled
speedup, both sequential and parallel execution times are
measured based on the same amount of work defined by
the scaled problem.

Both Amdahl’s law and Gustafson’s scaled speedup
use a single parameter, the sequential portion of a parallel
algorithm, to characterize an application. They are sim-
ple and give much insight into the potential degradation
of parallelism as more processors become available. Am-
dahl’s law has a fixed problem size and is intended in how
small the response time could be. It suggests that mas-
sively parallel processing may not gain high speedup.
Gustafson [5] approaches the problem from another point
of view. He fixes the response time and is interested in
how large a problem could be solved within this time.
This paper further investigates the scalability of prob-
lems. While Gustafson’s scalable problems are con-
strained by the execution time, the capacity of main
memory is also a critical metric. For parallel computers,
especially for distributed-memory multiprocessors, the
size of scalable problems is often determined by the
memory available. Shortage of memory is paid for in
problem solution time (due to the I/O or message-passing
delays) and in programmer time (due to the additional
coding required to mulitiplex the distributed memory) [3].
For many applications, the amount of memory is an im-
portant constraint to scaling problem size [6, 10]. Thus,
memory-bounded speedup is the major focus of this
paper.

We first study three models of speedup: fixed-size
speedup, fixed-time speedup, and memory-bounded
speedup. With both uneven workload allocation and
communication overhead considered, speedup formula-
tions will be derived for all three models. When commun-
ication overhead is not considered and the workload only
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consists of sequential and perfectly parallel portions, the
simplified fixed-size speedup is Amdahl’s law; the simpli-
fied fixed-time speedup is Gustafson’s scaled speedup;
and the simplified memory-bounded speedup contains
both Amdahl’s law and Gustafson’s speedup as special
cases. Therefore, the three models of speedup, which
represent different points of view, are unified.

Based on the concept of scaled speedup, intensive re-
search has been conducted in recent years in the area of
performance evaluation. Some other definitions of
speedup have also been proposed, such as generalized
speédup, cost-related speedup, and superlinear speedup.
Interested readers can refer to [14, 9, 16, 7, 18, 2, 8] for
details.

This paper is organized as follows. In Section 2 we
introduce the program model and some basic terminolo-
gies. More generalized speedup formulations for the
three models of speedup are presented in Section 3.
Speedup formulations for simplified cases are studied in
Section 4. The influence of communication/memory
tradeoff is studied in Section 5. Conclusions and com-
ments are given in Section 6.

2. A MODEL OF PARALLEL SPEEDUP

To measure different speedup metrics for scalable
problems, the underlying machine is assumed to be a
scalable multiprocessor. A multiprocessor is considered
scalable if, as the number of processors increase, the
memory capacity and network bandwidth also increase.
Furthermore, all processors are assumed to be homoge-
neous. Most distributed-memory multiprocessors and
multicomputers, such as commercial hypercube and
mesh-connected computers, are scalable multiproces-
sors. Both message-passing and shared-memory pro-
gramming paradigms have been used in such multipro-
cessors. To simplify the discussion, our study assumes
homogeneous distributed-memory architectures.

The parallelism in an application can be characterized
in different ways for different purposes [15]. For simplic-
ity, speedup formulations generally use very few parame-
ters and consider very high level characterizations of the
parallelism. We consider two main degradations of paral-
lelism, uneven allocation (load imbalance) and communi-
cation latency. The former degradation is application de-
pendent. The latter degradation depends on both the
application and the parallel computer under consider-
ation. To obtain an accurate estimate, both degradations
need to be considered. Uneven allocation is measured by
degree of parallelism.

DEFINITION 1. The degree of parallelism of a pro-
gram is an integer which indicates the maximum number
of processors that can be busy computing at a particular
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FIG. 1. Parallelism profile of an application.

instant in time, given an unbounded number of available
processors.

The degree of parallelism is a function of time. By
drawing the degree of parallelism over the execution time
of an application, a graph can be obtained. We refer to
this graph as the parallelism profile. Figure 1 is the paral-
lelism profile of a hypothetical divide-and-conquer com-
putation [13]. By accumulating the time spent at each
degree of parallelism, the profile can be rearranged to
form the shape (see Figure 2) of the application [12].

Let W be the amount of work of an application. Work
can be defined as arithmetic operations, instructions, or
whatever is needed to complete the application. For-
mally, the speedup with N processors and with the total
amount of work W is defined as

T(W)

SN(W) = TN(W)’ (1)

where T;(W) is the time required to complete W amount
of work on i processors. Let W; be the amount of work
executed with degree of parallelism i, and let m be the
maximum degree of parallelism. Thus, W = 271, W,. As-
suming each computation takes a constant time to finish
on a given processor, the execution time for computing
W; with a single processor is

nowy = %, @
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FIG. 2. Shape of the application.
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where A is the computing capacity of each processor. If
there are i processors available, the execution time is

Wi
(W) = e

With an infinite number of processors available, the exe-
cution time will not be further decreased and is

to(W) = m

< ] <
A forl<i<=m.

Therefore, without considering communication latency,
the execution times on a single processor and on an infi-
nite number of processors are

- W,

T(w) = 2+, 3)
i=1
m Wi

T.(W) = ‘=| A )]

t

The maximum speedup, with work W and an infinite
number of processors, is
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Average parallelism is an important factor for speedup
and efficiency. It has been carefully examined in [4]. Av-
erage parallelism is equivalent to the maximum speedup
S« [4, 15]. 8. gives the best possible speedup based on the
inherent parallelism of an algorithm. There are no ma-
chine dependent factors considered. With only a limited
number of available processors and with communication
latency considered, the speedup will be less than the best
speedup, S.(W). If there are N processors available and
N < i, then some processors have to do W; [i/N1/i work
and the rest of the processors will do W; [i/N]/i work. By
the definition of degree of parallelism, W; and W, cannot
be executed simultaneously for i # j. Thus, the elapsed
time will be

- 512]
Hence,

and the speedup is

m
i=1 Wi

m _‘Z[_’_}
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Communication latency is another degradation factor
of performance. Unlike degree of parallelism, communi-
cation latency is machine dependent. It depends on the
communication network topology, the routing scheme,
the adopted switching technique, and the dynamics of the
network traffic. Let Qn(W) be the communication over-
head-when N processors are used to complete W amount
of work. The actual formulation for Qn(W) is difficult to
derive as it is dependent on the communication pattern
and the message sizes of the algorithm itself as well as the
system-dependent communication latency. Note that
O~n(W) is encountered when there are N processors (N >
1). Assuming that the degree of parallelism does not
change due to communication overhead, the speedup be-
comes

(W) _

Sn(W) = T (W) —

@)
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3. SPEEDUP OF SCALED PROBLEMS

In the last section we developed a general speedup
formula and showed how the number of processors and
degradation parameters influence the performance. How-
ever, speedup is not dependent only on these parameters.
It is also dependent on how we view the problem. With
different points of view, we get different models of
speedup and different speedup formulations. One view-
point emphasizes shortening the time it takes to solve a
problem by parallel processing. With more and more
computation power available, the problem can, in princi-
ple, be solved in less and less time. With more processors
available, the system will provide a fast turnaround time
and the user will have a shorter waiting time. A speedup
formulation based on this philosophy is called fixed-size

. speedup. In the previous section, we implicitly adopted

fixed-size speedup. Equation (8) is the speedup formula
for fixed-size speedup. Fixed-size speedup is suitable for
many algorithms in which the problem size cannot be
scaled.

For some applications we may have a time limitation,
but we may not want to obtain the solution in the shortest
possible time. If we have more computation power, we
may want to increase the problem size, carry out more
operations, and get a more accurate solution. Various
finite difference and finite element algorithms for the so-
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lution of Partial Differential Equations (PDEs) are typical
examples of such scalable problems.

An important issue in scalable problems is the identifi-
cation of scalable constraints. One scalable constraint is
to keep the execution time unchanged with respect to
uniprocessor execution time. This viewpoint leads to a
different model of speedup, called fixed-time speedup.
For fixed-time speedup the workload is scaled up with
the number of processors available. Let W’ = 272, W{ be
the total amount of scaled work, where W/ is the amount
of scaled work executed with degree of parallelism i, and
m' be the maximum degree of parallelism of the scaled
problem where N processors are available. Note that the
maximum degree of parallelism can change as the prob-
lem is scaled. In order to keep the same turnaround time
as the sequential version, the condition T;(W) = Tn(W’)
must be satisfied for W’. That is, the following scalable
constraint must be satisfied,

m m’

> Wi=2

i=1 i=1

wi

]

L]+ ovew. ©

Thus, the general speedup formula for fixed-time
speedup is

T (W’
SNW) = 7o
W W
- : = . (10)
. W, r W,

m WL+ guw)

In many parallel computers, the memory size plays an
important role in performance. Many large scale multi-
processors with local memory architecture do not sup-
port virtual memory due to insufficient I/O network
bandwidth. When solving an application with one proces-
sor, the problem size is more often bounded by the mem-
ory limitation than by the execution time limitation. With
more processors available, instead of keeping the execu-
tion time fixed, we may want to meet the memory size
constraint. In other words, if you have adequate memory
space and the scaled problem meets the time limit im-
posed by fixed-time speedup, will you further increase
the problem size to yield an even better or more accurate
solution? If the answer is yes, the appropriate model is
memory-bounded speedup. Like fixed-time speedup,
memory-bounded speedup is a scaled speedup. The prob-
lem size scales up with memory size. The difference is
that in fixed-time speedup execution time is the limiting
factor and in memory-bounded speedup memory size is
the limiting factor.

With memory size considered as a factor of perfor-
mance, the requirements of an algorithm consist of two
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parts. One is the computation requirement, which is the
workload, and the other is the memory (capacity) re-
quirement. For a given algorithm, these two require-
ments are related to each other, and the workload might
be viewed as a function of the memory requirement. Let
M represent the memory size of each processor. Let g be
a function such that W = g(M), or M = g~Y(W), where
g7 'is the inverse function of g. An example of function g
and g~! can be found in Section 5. In a homogeneous,
scalable, parallel computer, the memory capacity on
each node is fixed and the total memory avaiiabie in-
creases linearly with the number of processors available.

“If W =2, W,is the workload for execution on a single
processor, the maximum scaled workload with N proces-
sors, W* = 37, W’ must satisfy the following scalable
constraint,

* = g(NM) = g(Ng~'(W)), (an
where m* is the maximum degree of parallelism of the
scaled problem and g is determined by the algorithm. The’
memory limitation can be stated as: the memory require-
ment for any active processor is less than or equal to
M = g1 (Z7Z, W). Here the main point is that the mem-
ory occupied on each processor is limited. By consider-
ing the communication overhead, Eq. (12) is the general
speedup formula for memory-bounded speedup.

m* *
i=1 W;

: (12)
Em‘ Wi

i=1

i
—_ *
[ N] + QN (W )
4. SIMPLIFIED MODELS OF SPEEDUP

The three general speedup formulations contain both
uneven allocation and communication latency degrada-
tions. They give better upper bounds on the performance
of parallel applications. On the other hand, these formu-
lations are problem dependent and difficult to under-
stand. They give detailed information for each applica-
tion, but lose the global view of possible performance
gains. In this section, we make some simplifying assump-
tions. We assume that the communication overhead is
negligible; i.e., On = 0, and the workload only contains
two parts, a sequential part and a perfectly parallel part.
Thatis, W;= 0, for i # 1 and i # N. We also assume that
the sequential part is independent of the system size;i.e.,
W, = W and WY.

Under this simplified case, the general fixed-size
speedup formulation (Eq. 8) becomes

W] + WN
Wy

N

Sn(W) = (13)

W+
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FIG. 3. Amdah!’s law.

Equation (13) is known as Amdahl’s law. Figure 3 shows
that when the number of processors increases the load on
each processor decreases. Eventually, the sequential
part will dominate the performance and the speedup is
bounded by (W; + Wy)/W,. In Figure 3, T, is the execu-
tion time for the sequential portion of the work, and Ty is
the execution time for the parallel portion of the work.

For fixed-time speedup and under the simplified condi-
tions, the scalable constraint (Eq. 9) becomes

Wi
+ - (AL S
W, + Wy = W N

(14)
Since W, = Wi, we have Wy = W,/N. That is, Wy =
NWy. Eq. (10) becomes

W, + NWy

SvW) = 5w

15)

The simplified fixed-time speedup (Eq. 15) is known as
Gustafson’s scaled speedup [5]. From Eq. (15) we can
see that the parallel portion of an application scales up
linearly with the system size. The relation of workload
and elapsed time for Gustafson’s scaled speedup is de-
picted in Fig. 4.

Elapsed|
Time

| T[T (T

Tn |[Ta TN | Th | TN
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Number of Processors (N)

FIG. 4. Gustafson’s scaled speedup.

We need some preparation before deriving the simpli-
fied formulation for memory-bounded speedup.

DEerFINITION 2. A function g is a semihomomorphism
if there exists a function g such that for any real number ¢
and any variable x, g(cx) = g(c)g(x).

One class of semihomomorphism functions is the
power function g(x) = x?, where b is a rational number.
In this case, g is the same as the function g. Another class
of semihomomorphism functions is the single term poly-
nomial g(x) = ax®, where a is a real constant and b is a
rational number. For this kind of semihomomorphism
function, g(x) = x?; which is not the same as g(x).

Under our assumptions, the sequential portion of the
workload, W, is independent of the system size. If the
influence of memory on the sequential portion is not con-
sidered; i.e., the memory capacity M is used for the par-
allel portion only, we have the following theorem.

THEOREM 1. If W = g(M) for some semihomo-
morphism function g, g(cx) = g(c)g(x), then, with all
data being accessible by all available processors and us-
ing all available memory space, the simplified memory-
bounded speedup is

W, + g(IN)Wy
g(N)
N

Sn(W*) = : (16)

Proof. Assume that the maximum problem size will
take the maximum available memory capacity of M when
one processor is used. As mentioned before, when one
processor is available, the parallel portion of the work-
load, Wy, can be expressed as Wy = g(M). Since all data
are accessible by all processors, there is no need to repli-
cate the data. With N processors available, the total
available memory capacity will be increased to NM. The
parallel portion of the problem can be scaled up to use all
available memory capacity NM. Thus, the scaled parallel
portion, W5, is expressed as WX = g(NM) = g(N)g(M).
Therefore, W§ = g(N)Wy and

Wi + WX W, + g(N)Wy
* = —
SNW™) = 3 RN Z(N) = 17
w, + £ wy

Note that in Theorem 1, we made two assumptions in
the simplified case: (1) Since the communication latency
is ignored, remote memory accesses take the same time
as local memory accesses. This implies that the data is
accessible by all available processors, and (2) all the
available memory space is used for a better solution.
These simplified speedup models are useful to demon-
strate how the sequential portion of an application, W,
will affect the maximum speedup that can be achieved
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with different number of processors. Let & = W,/(W, +
Wy). The simplified fixed-size speedup, fixed-time

speedup, and memory-bounded speedup are, respec-
tively,

N
Sn(W) = TN =1’ (18)
S\WY=N-kKN-1D=k+ N1 -k, 19
and
g(N) + k(1 — g(N))
*) = 20
SMWH =N (:é(N) ¥ RN = §(N))) @0

When the number of processors, N, goes to infinity,
Eq. (18) is bounded by the reciprocal of &, which gives
the maximum value of the fixed-size speedup. Equation
(19) shows that the fixed-time speedup is a linear function
of the number of processors with slope equal to (1 — k).
When N goes to infinity, this speedup can increase with-
out bound. Memory-bounded speedup depends on the
function g(N). When g(N) 1, memory-bounded
speedup is the same as fixed-size speedup. When g(N) =
N, the memory-bounded speedup is the same as the
fixed-time speedup. In general, the function g(N) is ap-
plication dependent and g(N) = N. It implies that when
the problem size is increased by N, the amount of work
increases more than N times. It is easy to verify that
Sy(W*) > Sy(W') when g(N) > N. Note that all data in
memory is likely to be accessed at least once. Thus, for
scaled problems, g(N) < N is unlikely to occur. The
sequential portion of the work plays different roles in the
three definitions of speedup. In fixed-size speedup, the
influence of the sequential portion increases with system
size and eventually dominates the performance. In fixed-
time speedup, the influence of the sequential portion is
uachanged which makes the speedup a linear function of
system size. In the memory-bounded speedup, since in
general g(N) > N, the influence of the sequential portion
is reduced when the system size increases, indicating that
a better speedup could be achieved with a larger system
size.

The function g(N) provides a metric to evaluate paral-
lel algorithms. In general, g(N) may not be derivable for a
given algorithm. Note that any single term polynomial is
a semihomomorphism function, and most solvable algo-
rithms have polynomial time computation and memory
requirement. If we take an algorithm’s computation and
storage complexity (the term with the largest power) as
its computation and memory requirement, for any algo-
rithm with polynomial complexity there exists a semiho-
momorphism function g, such that W = g(M). The ap-
proximated semihomomorphism function g will provide a
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FIG. 5. Amdahl’s law, Gustafson’s speedup, and SMB speedup for
k=1023.

good estimation on the memory-bounded speedup when
the number of processors is large. More details case stud-
ies for the three models of speedup can be found in [13].

Figure 5 demonstrates the difference between the three
models of speedup when k = 0.3 and N ranges from [ to
1024. For the simplified memory-bounded (SMB)
speedup, we choose g(N) = N¥2 which is typical in
many matrix operations to be described later. When
g(N) = N, it is Gustafson’s scaled speedup. The case of
G(N) = (1 + g[1 — g~Y(N)/N]N will be studied in next
section.

5. COMMUNICATION-MEMORY TRADEOFF

The simplified speedup formulations give the impact of
the sequential portion of an application on the maximum
speedup. The simplified memory-bounded speedup sug-
gests that when data are shared by all processors, maxi-
mum speedup is obtained. However, in practice if com-
munication overhead is considered, the data sharing
approach may not lead to maximum speedup. In the de-
sign of efficient parallel algorithms, the communication
cost plays an important role in deciding how a problem
should be solved and scaled. One way to reduce the fre-
quency of communication is to replicate some shared
data to processors. Thus, a good algorithm design should
consider the tradeoff between the maximum size that a
problem can scale and the reduction of available memory
due to the replication of shared data.

If data replication is allowed, the function W= g(NM)
will no longer hold. Motivated by Theorem 1, the func-
tion G(N) = WX/Wy is defined to represent the ratio of
work increment when N processors are available. In
terms of G(NV), the simplified memory-bounded speedup
is generalized below.

THEOREM 2. If W, is independent of system size,
W;=0forl <i<N,and W = G(N)Wy for some
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function G(N), the memory-bounded speedup is

W, + GI(N)Wx

wi + S w4 0w
The proof of Theorem 2 is similar to the proof of Theo-
rem 1. Equation (21) shows that the maximum speedup is
not necessarily achieved when G(N) = g(N). Note that
the communication cost Oy(W?*) is a unified communica-
tion cost. An optimal choice of the function G(N) is both
algorithm and architecture dependent and, in general, is
difficult to obtain. Also, unlike g(N), G(N) might be less
than N. If G(N) < N, memory capacity is likely to be the
scalable constraint when N is large. If G(N) > N, execu-
tion time is likely to be the scalable constraint. The func-
tion G(N) indicates the possible scalable constraint of an
algorithm. The proposed scaled speedup (Eq. 21) may
not be easy to fully understand at first glance. Hence, we
use matrix multiplication as an example to illustrate it.
A matrix often represents some discretized continuum.
Enlarging the matrix size will generally lead to a more
accurate solution for the continuum. For matrix multipli-
cation C = AB, there are many ways to partition the
matrices A and B to allow parallel processing [11]. As-
sume that there are N processors available, and A and B
are n X n matrices when executing on a single processor.
The computation requirement is 2»° and the memory re-
quirement is roughly 3»%. Thus, Wy = 2n3 and M = 2n2.
Two extreme cases of memory-bounded scaled speedup
are considered.

Sn(W*) =

@1

Local Computation

In the first case, we assume that the communication
cost is extremely high. Thus, data should be replicated if
possible to reduce communication. This can be achieved
by partitioning the columns of matrix B into N subma-
trices, By, B), ..., By-; and replicating the matrix A.
Thus, B;s are distributed among all the processors and
matrix A is replicated on each processor. Processor i
does the multiplication AB; = C;, i = 0, ..., N — 1, inde-
pendently. Since there is no need for communication, it is
referred to as local computation approach. Figure 6a
shows the partitioning of B for the case of N = 4.

If both A and B are allowed to scale along any dimen-
sion and A and B are not necessary to be square matrices,
the enlarged problem is A*B* = C*, where A*isan! X k
matrix, B* is a k X m matrix, and the resulting matrix C*
is an ! X m matrix. Note that the local memory capacity is
M = 3n?. 1t is easy to see that the maximum memory-
bound speedup will be achieved when | = k = n, and
m = nN. In other words, both B and C are scaled up N
times along their rows, and A is replicated but not scaled.
The amount of computation on each processor is fixed,

(v
W

A BoiB1iB2!B3 Coi{C1iC2:C3
(a) The matrix B is partitioned.
Ao Co00iCo1iCo02iCo3
Al jC10iC11iC12iC13
‘|BoiB1iB2iB3
A2 C20iC21iC22iC23
A3 C30iC31iC32iC33

(b) Both matrices A and B are partitioned.

FIG. 6. Two partitioning schemes of matrices A and B.

Wy = 2n3, and W = NWy. Thus, we have G(N) = N.
The memory-bounded scaled speedup is

o _ Wi+ NWy

Sn(W¥) =W, T W,

which is Gustafson’s scaled speedup. Thus, the best per-
formance of memory-bounded speedup using the local
computation model is the same as the Gustafson’s scaled
speedup. In general, the local computation model will
lead to a speedup that is less than Gustafson’s scaled
speedup. For example, if both A and B are restricted to
square matrices, the function G(N) will be

6 = (Vies) »

which is less than N and is botinded by 332 (see Appen-
dix). Note that due to data replication, the memory ca-
pacity requirement increases faster than the computation
requirement does.

,Global Computation

In the second extreme case, we assume that the com-
munication cost is negligible. Thus, there is no need to
replicate the data. A bigger problem can be solved. We
partition matrix A into N row blocks and B into N column
blocks (see Fig. 6b). By assigning each pair of subma-
trices, A; and B;, to one processor initially, all main diago-
nal blocks of C can be computed. Then, the row blocks of
A are rotated from one processor to apnother after each
row—column submatrix multiplication. With N proces-
sors, N — 1 rotations are needed to finish the computa-
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FIG. 7. Matrix multiplications without data replication.

tion as shown in Fig. 7 for the case of N = 4. This method
is referred to as global computations.

For the global computation approach, the maximum
scaled speedup is achieved when [ = k = m = nV'N (see
Appendix).

W, + N¥2Wy

SVWY) = W F Nwy

(22)

The corresponding function G(N) = N¥2, Assuming
N = n?, we can write Wy as a function of M as follows,

M

Wy = gM) = (_3_)3/2. (23)

Increasing the total memory capacity to NM, we have
R n
Wk = (g]\;—M) = N (23M) = N32Wy = g(N)Wy.

24
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The matrix multiplication problem has a semihomo-
morphism function between its memory requirement and
computation requirement and g(N) = N¥2. Assuming a
negligible communication cost, the global computation
approach will achieve the best possible scaled speedup of
the matrix multiplication problem.

We have studied two extreme cases of memory-
bounded scaled speedup which are based on global com-
putation and local computation. In general for most of the
algorithms, part of the data may be replicated and part of
the data may have to be shared. Deriving a speedup for-
mulation for these algorithms is difficult, not only be-
cause we are facing a more complicated situation, but
also because the ratio between replicated and shared data
is uncertain. The replicated part may not increase as the
system size is increased. In case the replicated part does
increase, its speed of increase may be different from the
speed that the shared part is increased. Also, an algo-
rithm may start with global computation. When the sys-
tem size is increased, replication may be needed as part
of the effort to reduce communication overhead. A spe-
cial combined case, G(N) = (1 + g[1 — g7/ (N)/N]DN,
has been carefully studied in [15]. The structure of that
study can be used as a guideline for other algorithms.

The influence of communication overhead on the best
performance of the memory-bounded speedup is studied.
The study can be extended to fixed-time speedup, where
redundant computation could be introduced to reduce the
communication overhead. The function G(N) determines
the actual achieved speedup. We have shown how the
partition and scale of the problem will influence the func-
tion G(N). In general, finding an optimal function G(N) is
a nonlinear optimization problem.

6. CONCLUSIONS

It is known that the performance of parallel processing
is influenced by the inherent parallelism and communica-
tion requirement of the algorithm, by the computation
and communication power of the underlying architec-
ture, and by the memory capacity of the parallel com-
puter system. However, how these factors related to
each other and how they influence the performance of
parallel processing is generally unknown. Discovering
the answers to these unknowns is important for designing
efficient parallel algorithms. In this paper one model of
speedup, memory-bounded speedup, is carefully studied.
The model contains these factors as its parameters.

As part of the study on performance, two other models
of speedup have also been studied. They are fixed-size
speedup and fixed-time speedup. Two sets of speedup
formulations have been derived for these two models of
speedup and for memory-bounded speedup. Formula-
tions in the first set give rise to generalized speedup for-
mulas. The second set of formulations only considers a
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special, simplified case. The simplified fixed-size speedup
is Amdahl’s law, the simplified fixed-time speedup is
Gustafson’s scaled speedup, and the simplified memory-
bounded speedup contains both Amdahl’s law and Gus-
tafson’s scaled speedup as special cases.

The three models of speedup, fixed-size speedup, fixed-
time speedup, and memory-bounded speedup, are based
on different viewpoints and are suitable for different
classes of algorithms. However, algorithms exist which
do not fit any of the models of speedup, but satisfy some
combipation of the models.

APPENDIX

When communication does not occur (local computa-
tion) or its cost is negligible, the memory-bounded
speedup Eq. (21) becomes

W, + GIN)Wx

W, + —vai) Wy

It is easy to verify that S¥ increases with the function
G(N). Thus, for the two extreme cases considered in
Section 5, the problem of how to reach the maximum
speedup becomes how to scale the matrix A and B such
that the function G(N) reaches its maximum value. The
matrix A and B can be scaled in any dimension. A general
enlarged matrix multiplication problem is

Sy = (25)

ApiBiam = Ciams

where both A and B are rectangular matrices. To achieve
an optimal speedup, we need to decide the integers [, k,
and m, for which that the function G(N) reaches the max-
imum value. The following result gives the optimal /, k,
and m for the global computation approach (Fig. 6b)
given in Section 5. Recall that N is the number of proces-
SOTS.

PROPOSITION 1. If A and B are n X n matrices when
N = 1, then the global computation approach reaches
the maximum G(N) whenl =k = nand m = n X VN,
excluding the communication cost. The corresponding
G(N) equals N¥2, and the maximum speedup is

W, + N¥V2Wy

*
SN = W, F Ny

(26)

Proof. By the partition schema of the global compu-
tation approach, the rows of matrix A and the columns of
matrix B are distributed processors. The workload on
each processor is

AunykBisominy = Cnysiminy-

Since the memory is fully filled,

—l—*k+k*in-+

m_ ;.
N N *N 3n?,

Z|~

Thus,

|z|3

27
m

, N N

The work of the scaled problem is

3n2N — l*m]

W}'\}=2*l*m*k=2*l*m*[ T m

l*m3m®N —l*m

n? I+ m
_(3n2—N—l*m)(l*m)W
B (+m=xn N
Bnt = N-Ixm)(l*m)

d+my=*n )

= 2}

G(N) = (28)

Therefore, G(N) reaches its maximum value if and only if
the function

(B2 = N-—-1xm)l*m)
- l+m

fd, m

reaches its maximum value. At its maximum value, the
derivatives of f(I, m) satisfy

fi=—-Im? - 2lm?> + 3n’m’N = 0,

fm = —12m? = 2mi* + 3n’m*N = 0.

It leads to

12+ 2lm — 32N =0, 29)

m? + 2lm — 3n2N = 0. 30)
This is

(I + m)? = m* + 3n’N.

(m + 1)? =12 + 3n°N.
Thus, we have m? = [2, i.e.

l=m 3D

Combining the Eq. (31) and Eq. (29), we get
Il=m=nVN.
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From the Eq. (27), we have k = nV N. Thus, the en-
larged A and B are still square matrices, with dimension
nVN. By Eq. (28) the maximum G(N) is

(nVNY(3nN — (nVNY) _

G = 22nVN)

N3/2,

which is equal to the memory-work function g(N) for the
matrix multiplication problem (see Section 5), and the
corresponding speedup is
S* = W, + N32Wy

N~ W, + N2Wy '
From Theorem 1, it is the best possible performance for
the matrix multiplication problem. R

Using similar arguments as in Proposition 1, we can
find that the optimal dimension of the local computation
approach is / = k = n, m = nN, and the maximum value
of G(N) is N (see Section 5). The scalability of matrix A
and B is application dependent. If A and B should be
maintained as square matrices, the following proposition
shows the limitation of the local computation approach.

PROPOSITION 2. If A and B are n X n matrices when
N =1, and | = k = m is required, then the maximum
value of G(N) of the local computation approach is
(V(BNIN + 2))3, which is bounded by 3*? and is smaller
than N.

Proof. When A and B are square matrices, the scaled
problem is

Ak Biok = Crak-

If the load is balanced on each processor, and m = k/N is
an integer, then each processor does the work

Ak Biom = Ciom-
When memory is fully used,
k? + 2k * m = 3n?

Since m = k/IN,

L

k* + N 3n.
Thus,

3n? ( 3N )

The scaled work

3N \} 3N\’
Wi=2%=\\N+2) 27 = N+2)WN'
and
3N\’
GIN)=\VN+2/)-
Since
3N__3N+6__6 _._ _6
N+2 N+2 N+2 N+2

the G(N) is bounded by 3’2 and is smaller than N. W
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